
ELSEVIER

Contents lists available at SciVerse ScienceDirect

Superlattices and Microstructures

journal homepage: www.elsevier.com/locate/superlattices

Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β -Fe₂O₃ nanoparticles

Mohammed M. Rahman^{a,*}, A. Jamal^a, Sher Bahadar Khan^{b,c}, M. Faisal^a

^a Centre for Advanced Materials and Nano-Engineering (CAMNE), Department of Chemistry, Faculty of Sciences and Arts, 7 Najran University, P.O. Box 1988, Najran 11001, Saudi Arabia

^b The Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, P.O. Box 80203, Saudi Arabia ^c Chemistry Department, Faculty of Science, King Abdulaziz University, P. O. Box 80203, Jeddah 21589, Saudi Arabia

ARTICLE INFO

Article history: Received 9 January 2011 Received in revised form 18 July 2011 Accepted 26 July 2011 Available online 4 August 2011

Keywords: Iron-oxide nanoparticles Structural and optical properties Fabrication Chloroform sensors Sensitivity

ABSTRACT

Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV-vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nanocrystalline β -Fe₂O₃ was characterized using XRD techniques. β -Fe₂O₃ nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response (*I–V* technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe₂O₃ NPs thin-film on GCE. The calibration plot was linear (R = 0.9785) over the large range of 12.0 μ M to 12.0 mM. The sensitivity was calculated as 2.1792 μ A cm⁻² mM⁻¹ with a detection limit of $4.4 \pm 0.10 \,\mu\text{M}$ in short response time (10.0 s).

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Nanotechnology is attracting significant attention due to its unique property and capability in investigating sensing analytes, which is hardly feasible for the conventional sensor systems [1–3].

* Corresponding author. Tel.: +966 59 642 1830; fax: +966 7 5442135. *E-mail address:* mmrahmanh@gmail.com (M.M. Rahman).

0749-6036/\$ - see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.spmi.2011.07.016