Tetrahedron Letters 53 (2012) 1210-1213

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/tetlet

Palladium-catalyzed bisfunctionalization of active alkenes by β -acetonitrile- α -allyl addition: application to the synthesis of unsymmetric 1,4-di(organo)fullerene derivatives

Shirong Lu^{a,b}, Tienan Jin^{c,*}, Ming Bao^a, Abdullah M. Asiri^{d,e}, Yoshinori Yamamoto^{c,*}

^a State Kev Laboratory of Fine Chemicals. Dalian University of Technology. Dalian 116012. China

^b Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8548, Japan

^c Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai 980-8577, Japan

^d Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia

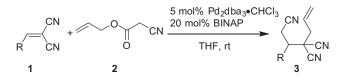
^e Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia

ARTICLE INFO

Article history: Received 27 October 2011 Revised 7 December 2011 Accepted 19 December 2011 Available online 5 January 2012

Keywords:

 $\begin{array}{l} \beta \mbox{-} Acetonitrile \mbox{-} \alpha \mbox{-} allyl addition \\ Bisfunctionalization of active alkenes \\ All-carbon quarternary center \\ Unsymmetric 1,4-disubstituted C_{60} \end{array}$


ABSTRACT

A new, efficient palladium-catalyzed bisfunctionalization of ethylidene malononitriles by addition of acetonitrile and allyl groups is developed for the construction of all-carbon quarternary and tertiary centers simultaneously. This methodology is successfully applied to the synthesis of unsymmetric 1,4-disubstituted C_{60} .

© 2011 Elsevier Ltd. All rights reserved.

Palladium-catalyzed β -nucleophilic- α -allyl addition of active olefins through π -allyl-palladium intermediates has emerged as a mild and efficient multiple bond-forming method for the simultaneous construction of all-carbon quaternary and tertiary centers,^{1,2} which are important structural units in a wide range of bioactive substances and natural products.³ Over the past decade, we and other groups have been interested in developing new palladiumcatalyzed β -nucleophilic- α -allyl addition reactions toward active alkenes through various π -allyl palladium intermediates, including heteroatom- and carbon-nucleophile addition/allylation,^{2e-k} bisallylation,^{2a-d} acetonation/allylation,^{2l,m} amidoallylation,²ⁿ and iminoallylation (Fig. 1).²⁰ The palladium-catalyzed decarboxylative reaction for the formation of π -allyl palladium species is an environmentally friendly and economical process^{1c,4,5}; the reaction proceeds under essentially neutral conditions with high atom economy. Based on this concept, we envisioned that the bis- π allylpalladium^{2a} analogue acetonitrile-(π -allyl)palladium complex should be formed by the reaction of cyanoacetic acid allyl ester with a palladium catalyst, which will undergo acetonitrile/allyl addition to the active alkenes (Fig. 1). Furthermore, in continuation of our interest in transition metal catalyzed functionalization of [60]fullerene (C_{60}),⁶ we reasoned that if successful, this methodology would be applicable to the selective bisfunctionalization of C_{60} because of its electrophilic nature and specialized alkene component. Transition metal catalyzed functionalization of C_{60} has emerged as a promising method for preparing functionalized C_{60} derivatives with high selectivity and high functional group compatibility under mild reaction conditions.⁷ However, investigations on the synthesis of unsymmetric 1,4-di(organo)fullerenes have been seldom studied,⁸ in particular, a one-step catalytic method has not been reported.

Herein, we report a new Pd-catalyzed bisfunctionalization of various malononitriles **1** with cyanoacetic acid allyl ester (**2**), that affords the β -acetonitrile- α -allyl addition products **3** in good to high yields (Eq. 1). Moreover, we have successfully applied this method to the synthesis of unsymmetric 1-acetonitrile-4-allyl-[60]fullerene **4a** in good yield in one step.

^{*} Corresponding authors. Tel.: +81 22 217 6177; fax: +81 22 217 6165 (T.J.); tel.: +81 22 217 6164; fax: +81 22 217 5979 (Y.Y.).

E-mail addresses: tjin@m.tohoku.ac.jp (T. Jin), yoshi@m.tohoku.ac.jp (Y. Yamamoto).

^{0040-4039/\$ -} see front matter @ 2011 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2011.12.075