Acta Crystallographica Section E

Structure Reports
Online
ISSN 1600-5368

4-(5-Oxo-3-phenyl-4,5-dihydro-1 H -pyrazol-1-yl)benzenesulfonamide

Abdulrahman O. Al-Youbi, ${ }^{\text {a }}$ Abdullah M. Asiri, ${ }^{\text {a,b }}$
Hassan M. Faidallah, ${ }^{\text {a }}$ Khalid A. Alamry ${ }^{\text {a }}$ and Seik Weng $\mathbf{N g}^{\mathrm{c},{ }^{\mathrm{a}} *}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ${ }^{\text {b }}$ Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 11 August 2011; accepted 13 August 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.041 ; w R$ factor $=0.121 ;$ data-to-parameter ratio $=13.2$.

With respect to the aliphatic planar five-membered ring (r.m.s. deviation $=0.011 \AA$) of the title compound, $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{~S}$, the phenyl ring is aligned at $6.9(1)^{\circ}$ and the phenylene ring at 2.4 (1) $)^{\circ}$, so that the three rings are nearly coplanar. The amino group has the N atom in a pyramidal geometry; the group is a hydrogen-bond donor to the sulfonyl O atom of one molecule and to the ketonic O atom of another molecule, resulting in the formation of a layer parallel to the $b c$ plane.

Related literature

For the synthesis, see: Casoni (1956); Itano (1955).

Experimental

Crystal data
$\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}$

$$
M_{r}=315.34
$$

Monoclinic, $P 2_{1} / c \quad Z=4$
$a=13.6794$ (4) A
$\mathrm{Cu} K \alpha$ radiation
$b=13.4304$ (4) \AA
Cu K α radiation
$c=7.3678(2) \AA$
$\mu=2.29 \mathrm{~mm}^{-1}$
$\beta=91.055(3)^{\circ}$
$V=1353.38(7) \AA^{3}$
$0.30 \times 0.05 \times 0.05 \mathrm{~mm}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010)
$T_{\text {min }}=0.546, T_{\text {max }}=0.894$
10404 measured reflections 2731 independent reflections 2444 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.041$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
H atoms treated by a mixture of
$w R\left(F^{2}\right)=0.121 \quad$ independent and constrained
$S=1.06$
2731 reflections
207 parameters
refinement
$\Delta \rho_{\max }=0.73$ e \AA^{-3}
$\Delta \rho_{\min }=-0.51$ e \AA^{-3}

Table 1
Hydrogen-bond geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H1 $\cdots \mathrm{O}^{\mathrm{i}}$	$0.88(1)$	$2.12(1)$	$2.975(2)$	$164(2)$
N3-H2 $\cdots \mathrm{O} 2^{\mathrm{ii}}$	$0.87(1)$	$2.12(1)$	$2.978(2)$	$168(2)$

Symmetry codes: (i) $-x+2,-y+1,-z+1$; (ii) $x,-y+\frac{3}{2}, z+\frac{1}{2}$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: X-SEED (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5611).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Casoni, D. (1956). Boll. Sci. Fac. Chim. Ind. Bologna, 14, 22-30.
Itano, K. (1955). Yakugaku Zasshi, 5, 441-444.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

