Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

(2Z)-1-(5-Hydroxy-3-methyl-1-phenyl-1H-pyrazol-4-yl)-3-(4-methoxyanilino)-but-2-en-1-one

Abdullah M. Asiri, ${ }^{\text {a, }} \boldsymbol{} \boldsymbol{} \ddagger$ Abdulrahman O. Al-Youbi, ${ }^{\text {a }}$
Hassan M. Faidallah, ${ }^{\text {a }}$ Seik Weng $\mathrm{Ng}^{\mathrm{c}, \mathrm{a}}$ and Edward R. T. Tiekink ${ }^{\mathrm{C} *}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, ${ }^{\text {b }}$ The Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, PO Box 80203, Saudi Arabia, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 8 August 2011; accepted 10 August 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.042 ; w R$ factor $=0.104 ;$ data-to-parameter ratio $=15.4$.

The central residue in the title compound, $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}$, is close to planar (r.m.s. deviation $=0.0753 \AA$ for all non- H atoms from OH to NH inclusive): the hydroxy, amino and carbonyl groups all lie to the same side of the molecule (the conformation about the ethene bond is Z), facilitating the formation of intramolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds that close $S(6)$ rings. However, overall the molecule is twisted as the terminal aromatic rings are not coplanar with the central plane [dihedral angles $=20.55(5)$ and $80.90(4)^{\circ}$ for the N -bound phenyl ring and the methoxybenzene ring, respectively]. The dihedral angle between the rings is $82.14(7)^{\circ}$. Supramolecular layers in the $a c$ plane mediated by $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions are found in the crystal.

Related literature

For background to the synthesis, see: Gelin et al. (1983); Bendaas et al. (1999). For the structure of the 4-chloro derivative, see: Asiri et al. (2011).

Experimental

Crystal data
$\begin{array}{ll}\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3} & \text { Monoclinic, } P 2_{1} / n \\ M_{r}=363.41 & a=9.5717(3) \mathrm{A}\end{array}$

$$
a=9.5717(3) \AA
$$

$b=16.9516$ (6) \AA
$c=11.3143$ (4) A
$\beta=104.946$ (4) ${ }^{\circ}$
$V=1773.70(10) \AA^{3}$
$Z=4$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\text {min }}=0.837, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.104$
$S=1.05$
3939 reflections
255 parameters
2 restraints

Mo $K \alpha$ radiation
$\mu=0.09 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.25 \times 0.20 \mathrm{~mm}$

8486 measured reflections 3939 independent reflections 3145 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.024$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).
$C g 1$ and $C g 2$ are the centroids of the $\mathrm{N} 1, \mathrm{~N} 2, \mathrm{C} 1-\mathrm{C} 3$ and $\mathrm{C} 15-\mathrm{C} 20$ rings, respectively.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1-H1 $\cdot \mathrm{O} 2$	$0.86(1)$	$1.68(1)$	$2.4963(15)$	$156(2)$
N3-H3 -O 2	$0.89(1)$	$1.92(1)$	$2.6447(16)$	$138(2)$
C14-H14b $\cdots \mathrm{Cg} 1^{\mathrm{i}}$	0.98	2.88	$3.5542(18)$	127
C21-H21c $\cdots \mathrm{Cg} 2^{\mathrm{ii}}$	0.98	2.76	$3.5195(17)$	134

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x+2,-y+1,-z$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors are thankful to the Center of Excellence for Advanced Materials Research and the Chemistry Department at King Abdulaziz University for providing research facilities. Dr Al-Amry is thanked for support. The authors also thank the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6355).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Asiri, A. M., Al-Youbi, A. O., Alamry, K. A., Faidallah, H. M., Ng, S. W. \& Tiekink, E. R. T. (2011). Acta Cryst. E67, o2157.
Bendaas, A., Hamdi, M. \& Sellier, N. (1999). J. Heterocycl. Chem. 36, 12911294.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Gelin, S., Chantegrel, B. \& Nadi, A. I. (1983). J. Org. Chem. 48, 4078-4082.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

[^0]
[^0]: \ddagger Additional correspondence author, e-mail: aasiri2@kau.edu.sa.

