Acta Crystallographica Section E
Structure Reports
Online
ISSN 1600-5368

3-Amino-1-methyl-9,10-dihydro-phenanthrene-2,4-dicarbonitrile

Abdulrahman O. AI-Youbi, ${ }^{\text {a }}$ Abdullah M. Asiri, ${ }^{\text {a,b }}$
Hassan M. Faidallah, ${ }^{\text {a }}$ Khalid A. Alamry ${ }^{a}$ and Seik Weng $\mathrm{Ng}^{\mathrm{c}, \mathrm{a} *}$

${ }^{\text {a }}$ Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, ${ }^{\mathbf{b}}$ Center of Excellence for Advanced Materials Research, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia, and ${ }^{\text {c }}$ Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 25 August 2011; accepted 26 August 2011
Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$; R factor $=0.034 ; w R$ factor $=0.091$; data-to-parameter ratio $=7.4$.

The asymmetric unit of the title compound, $\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}$, contains two independent molecules, which are non-planar as they are buckled owing to the ethylene portion. The dihedral angle between the benzene rings is $26.4(1)^{\circ}$ in one molecule and $32.9(1)^{\circ}$ in the other. In the crystal, the molecules are disposed about a false inversion center, and are linked by two $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, generating a dimer. The dimers are linked by further $\mathrm{N}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds, resulting in a chain that runs along the longest axis of the orthorhombic unit cell.

Related literature

For the synthesis of dihydrophenanthrenes, see: Dellagreca et al. (2000); Ram \& Goel (1997).

Experimental

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3}$
$M_{r}=259.30$
Orthorhombic, Pna_{1}
$a=26.8587$ (7) \AA
$b=8.8158$ (2) \AA
$c=11.2035$ (3) A
$V=2652.78(12) \AA^{3}$
$Z=8$
$C u K \alpha$ radiation
$\mu=0.62 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$
$0.30 \times 0.20 \times 0.02 \mathrm{~mm}$

Data collection
Agilent SuperNova Dual diffractometer with an Atlas detector
Absorption correction: multi-scan (CrysAlis PRO; Agilent, 2010) $T_{\text {min }}=0.836, T_{\text {max }}=0.988$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.034$
$w R\left(F^{2}\right)=0.091$
$S=1.09$
2800 reflections
379 parameters
1 restraint

H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\max }=0.16 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\min }=-0.20 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 2-\mathrm{H} 21 \cdots \mathrm{~N} 4$	$0.91(4)$	$2.15(4)$	$3.007(3)$	$156(3)$
$\mathrm{N} 2-\mathrm{H} 22 \cdots \mathrm{~N} 6^{\mathrm{i}}$	$0.91(3)$	$2.38(3)$	$3.265(3)$	$164(2)$
$\mathrm{N} 5-\mathrm{H} 51 \cdots \mathrm{~N} 1^{i}$	$0.91(4)$	$2.12(4)$	$3.012(3)$	$168(3)$
$\mathrm{N} 5-\mathrm{H} 52 \cdots \mathrm{~N} 3$	$0.91(3)$	$2.41(3)$	$3.283(3)$	$161(3)$

Symmetry codes: (i) $x, y, z+1$; (ii) $x, y, z-1$.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: $X-S E E D$ (Barbour, 2001); software used to prepare material for publication: publCIF (Westrip, 2010).

We thank King Abdulaziz University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5310).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, England.
Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.
Dellagreca, M., Fiorentino, A., Monaco, P., Previtera, L. \& Zarrelli, A. (2000). J. Chem. Ecol. 26, 587-600.

Ram, V. J. \& Goel, A. (1997). J. Chem. Res. pp. 460-461.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

